2023-2024 Undergraduate Catalog 
    
    Dec 11, 2024  
2023-2024 Undergraduate Catalog [Archived Catalog]

Electrical Engineering (B.S.)

Location(s): Brookings Main Campus


Blue rectangle with triangles.

Apply Now Request More Information

Students looking at solar panels.

Program Coordinator/Contact

George Hamer, Acting Department Head
Department of Electrical Engineering and Computer Science
Daktronics Engineering Hall 214
605-688-4526

Program Information

Electrical engineers play key roles in solving technical problems in many areas including biomedical engineering, communications, computers and digital hardware, electronic materials and sensor devices, image processing, control systems, alternative energy and power systems.

The program begins the first year developing a strong foundation in mathematics, science, and communication. Unique to SDSU, the EE program boasts a first semester introductory hands-on lab experience followed by a first course in linear circuits and lab in the second semester. Following this are two intensive years of study in circuits, energy conversion, electronics, signal, systems and control theory, electronic material and devices, digital and microprocessor systems. The junior and senior years include courses that cover the breadth and depth of the field.  During their senior year, students will select a specialization and take technical electives in their chosen area. The capstone of the program is Senior Design I and II, a two-semester sequence taken in the senior year that places every student on a team that designs, builds, tests, and demonstrates a significant electrical engineering project (typically industry sponsored), which 1) incorporates appropriate engineering standards and multiple constraints, and 2) is based on the knowledge and skills acquired in earlier course work; students also take a Project Management and Engineering Economics course that supports this sequence. The projects are developed in collaboration with SDSU researchers or industry and provide students valuable “real world” team design experience.

Accreditation, Certification, and Licensure

The Electrical Engineering (BS) program is accredited by the Engineering Accreditation Commission of ABET, https://www.abet.org, under the General Criteria and Program Criteria for Electrical, Computer, Communications, Telecommunication(s) and Similarly Named Engineering Programs..

Upon successful completion of both the Electrical Engineering curriculum and the Fundamentals of Engineering (FE) exam, and five years of engineering work experience under a professional engineer (PE), the student is allowed to take the PE exam to become a licensed PE.

Course Delivery Format

A majority of the courses are taught on campus in smart classrooms. A significant number of courses have an associated lab component that strengthens students’ hand-on practical experience. The smart classrooms allow for a variety of methods for student engagement and faculty are able to record and post their lectures on-line.  

Program Educational Objectives


The undergraduate EE program educational objectives are to equip individuals who, after graduation and initial work experience,

  1. provide innovative and state-of-the-art approaches to solving complex technical problems through application of sound electrical engineering principles and make high quality technical decisions based on accumulated knowledge, experience, wisdom and common sense.
  2. create positive organizational impact through individual contribution and teamwork with a commitment to working with others of diverse culture and interdisciplinary backgrounds.
  3. demonstrate professional stewardship and ethical responsibility and exemplify a productive member of society by serving their communities and society.
  4. illustrate initiative and successful career growth through measurable and impactful contributions that strongly support the organization’s core high-level goals, accompanied by lifelong learning through graduate work, professional development and self-study, leading to increases in organizational responsibility.

Student Outcomes


All graduates will have:

  1. an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics.
  2. an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors.
  3. an ability to communicate effectively with a range of audiences.
  4. an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts.
  5. an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives.
  6. an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions.
  7. an ability to acquire and apply new knowledge as needed, using appropriate learning strategies.

Academic Requirements


Students will be admitted into junior level EE courses only after they have completed EE 216, EE 216L, EE 218, EE 218L, EE 222, EE 222L, EE 245, EE 245L, and EE 260 with minimum grades of “C.” Students will not be permitted to enroll in subsequent courses for which EE 216, EE 216L, EE 218, EE 218L, EE 222, EE 222L, EE 245, EE 245L, and EE 260 is a prerequisite until the above requirement has been met. Students must also pass all junior electrical engineering courses (with the exception of EE 315 and EE 385) prior to taking EE 464 Senior Design Project I. In addition to the graduation requirements and academic performance specified in this catalog, to earn the Bachelor of Science degree in Electrical Engineering a student must earn a CGPA of 2.0 or higher for all his/her Electrical Engineering courses combined. All graduating seniors are required to take the Fundamentals of Engineering examination which leads to professional registration.

Requirements for Electrical Engineering Major: 130 Credits


Bachelor of Science

Technical Electives


The 12 required technical electives must be from Electrical Engineering courses at the 400 level. These may be selected from specialization areas: Biomedical, Communications, Computers, Electronic Devices, Image Processing, or Power Systems. All EE majors are strongly advised to select technical electives in a coherent manner to meet desired professional/employment goals. 

Some suggested areas of emphasis are listed below, which also identify courses outside of EE (courses outside of EE do not apply toward the required technical elective credits). Thus, students are not required to take all courses in an emphasis area. Following are some suggested areas and supporting courses.

Communications and Advanced Electronics Emphasis


Total Required Credits: 130


Cooperative Education Program


Students have the opportunity to work in industry and receive technical elective credit for the experience through EE 494 (Internship). A formal work plan must be approved by the Electrical Engineering administration prior to the work experience. Further information can be found in the Program’s Internship and Cooperative Education policy, located on the program’s Web site.

Summary of Program Requirements


Bachelor of Science

System General Education Requirements* 33 Credit Hours
Major Requirements 69 Credit Hours
Supporting Coursework 28 Credit Hours
Electives** 0 Credit Hours

*System General Education Requirements for students pursuing a baccalaureate degree shall include a minimum of 30 credit hours. Some general education coursework may be counted for Major Requirements and Supporting Coursework.
**Taken as needed to complete any additional degree requirements.

Academic Advising Guide Sheet


The goal of the academic advising guide sheets and sample plans of study is to promote undergraduate student success by guiding all students to timely completion of an undergraduate degree. Students are not limited to the course sequence provided for their academic program. Instead, the sample plan of study is one possible path to completing your degree and is meant to be used as a guide for planning purposes in consultation with an academic advisor. The plans also help students prepare for meetings with their academic advisor and track their progress in their selected academic program.