2018-2019 Graduate Catalog 
    
    Nov 22, 2024  
2018-2019 Graduate Catalog [Archived Catalog]

Data Science (M.S.)


Return to {$returnto_text} Return to: Programs & Degrees (Listed by Degree Type)

Program Coordinator/Contact

Kurt D. Cogswell, Department Head
Donald Vestal, Associate Professor/Graduate Coordinator
Department of Mathematics and Statistics
Architecture, Mathematics and Engineering 209, Box 2220C
605-688-6196

Program Information

The SDSU M.S. in Data Science is a one-year program that provides graduates with the statistical, mathematical, and computational skills needed to meet the large-scale data science challenges of today’s professional world.  The curriculum incorporates current techniques in statistics, operations research, predictive modeling, data mining, forecasting, big data programming and management, and data visualization.  The program’s focus is on application and interpretation of modern data analysis techniques of known value in today’s professional world, both private and public sector.

Course Delivery Format

Courses will typically be delivered in on-campus classrooms, with occasional courses offered online.

Available Options for Graduate Degrees


Master of Science Option C - Coursework Only 30 Credit Hours

Core Requirements


Electives


Credits: 12

The following courses will be the default elective curriculum beyond the core courses in the M.S. in Data Science program.


The following courses are available to students with appropriate mathematical and statistical prerequisite knowledge.


Total Required Credits: 30 (Option C)


Additional Admission Requirements


GRE:  Not required.
TOEFL:  Program requirement minimum score of 575paper-based, 90-91 internet-based, OR
IELTS:  Program requirement minimum score of 6.0

In addition to meeting Graduate School admission requirements, applicants for graduate study for the M.S. in Data Science must have:

  • Baccalaureate degree from an institution of higher education with full regional accreditation for that degree.
  • The applicant must have an undergraduate grade point average of at least 3.0 on 4.0 scale.
  • Transcript should show completion of courses in key areas equivalent to:
    • Database design/programming including familiarity with SQL (STAT 410/510 or equivalent)
    • Understanding of the principles of programming (CSC 150 or INFO 101 or equivalent)
    • Understanding of statistical principles (STAT 441/541 or equivalent)
  • Undergraduate preparatory courses required of entering students include two semesters of calculus, one course in matrix or linear algebra, one introductory course in calculus-based probability and statistics.  SDSU courses that would satisfy these requirements would be:

    • MATH 123 Calculus I
    • MATH 125 Calculus II
    • MATH 215 Matrix Algebra OR MATH 315 Linear Algebra
    • STAT 381 Introduction to Probability and Statistics
  • Students with other educational backgrounds may be admitted conditionally.  They will be required to complete the necessary coursework to eliminate deficiencies in their background during their first semester in the program.

General Requirements


Graduate students should consult with their advisor before registering for graduate work.

For additional information refer to the Master’s Degree Requirements .

Return to {$returnto_text} Return to: Programs & Degrees (Listed by Degree Type)